Potent inhibition of human liver aldehyde oxidase by raloxifene.

نویسنده

  • R Scott Obach
چکیده

The selective estrogen receptor modulator, raloxifene, has been demonstrated as a potent uncompetitive inhibitor of human liver aldehyde oxidase-catalyzed oxidation of phthalazine, vanillin, and nicotine-Delta1'(5')-iminium ion, with K(i) values of 0.87 to 1.4 nM. Inhibition was not time-dependent. Raloxifene has also been shown to be a noncompetitive inhibitor of an aldehyde oxidase-catalyzed reduction reaction of a hydroxamic acid-containing compound, with a K(i) of 51 nM. However, raloxifene had only small effects on xanthine oxidase, an enzyme related to aldehyde oxidase. In addition, several other compounds of the same therapeutic class as raloxifene were examined for their potential to inhibit aldehyde oxidase. However, none were as potent as raloxifene, since IC(50) values were orders of magnitude higher and ranged from 0.29 to 57 micro M. In an examination of analogs of raloxifene, it was shown that the bisphenol structure with a hydrophobic group on the 3-position of the benzthiophene ring system was the most important element that imparts inhibitory potency. The relevance of these data to the mechanistic understanding of aldehyde oxidase catalysis, as well as to the potential for raloxifene to cause drug interactions with agents for which aldehyde oxidase-mediated metabolism is important, such as zaleplon or famciclovir, is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for substrate-dependent inhibition profiles for human liver aldehyde oxidase.

The goal of this study was to provide a reasonable assessment of how probe substrate selection may impact the results of in vitro aldehyde oxidase (AO) inhibition experiments. Here, we used a previously studied set of seven known AO inhibitors to probe the inhibition profile of a pharmacologically relevant substrate N-[(2-dimethylamino)ethyl]acridine-4-carboxamide (DACA). DACA oxidation in huma...

متن کامل

Evaluation of rhesus monkey and guinea pig hepatic cytosol fractions as models for human aldehyde oxidase.

Aldehyde oxidase (AOX) is a cytosolic enzyme expressed across a wide range of species, including guinea pig and rhesus monkey. These species are believed to be the best preclinical models for studying human AOX-mediated metabolism. We compared AOX activity in rhesus monkeys, guinea pigs, and humans using phthalazine and N-[2-(dimethylamino)ethyl]acridone-4-carboxamide (DACA) as substrates and r...

متن کامل

Dmd048546 24..29

The goal of this study was to provide a reasonable assessment of how probe substrate selection may impact the results of in vitro aldehyde oxidase (AO) inhibition experiments. Here, we used a previously studied set of seven known AO inhibitors to probe the inhibition profile of a pharmacologically relevant substrate N-[(2dimethylamino)ethyl]acridine-4-carboxamide (DACA). DACA oxidation in human...

متن کامل

Dmd048546 24..29

The goal of this study was to provide a reasonable assessment of how probe substrate selection may impact the results of in vitro aldehyde oxidase (AO) inhibition experiments. Here, we used a previously studied set of seven known AO inhibitors to probe the inhibition profile of a pharmacologically relevant substrate N-[(2dimethylamino)ethyl]acridine-4-carboxamide (DACA). DACA oxidation in human...

متن کامل

Dmd048546 24..29

The goal of this study was to provide a reasonable assessment of how probe substrate selection may impact the results of in vitro aldehyde oxidase (AO) inhibition experiments. Here, we used a previously studied set of seven known AO inhibitors to probe the inhibition profile of a pharmacologically relevant substrate N-[(2dimethylamino)ethyl]acridine-4-carboxamide (DACA). DACA oxidation in human...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2004